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3 Dipartimento di Scienze Fisiche, Università dell’Insubria, Via Lucini 3, 23100 Como, Italy

Received 15 February 2000

Abstract. We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-
Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments
with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the
condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics
of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the
possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping

Few years ago, Bose-Einstein condensation (BEC) has
been experimentally observed in clouds of trapped alkali-
metal atoms [1]. Recently, BEC has been also achieved
with atomic hydrogen confined in a Ioffe-Pritchard
trap [2]. That is an important result because hydrogen
properties, like interatomic potentials and spin relaxation
rates, are well understood theoretically. As stressed by
Killian et al. [2], the s-wave scattering length of the hydro-
gen is very low and, compared with other atomic species,
the condensate density is high, even for small conden-
sate fractions. Moreover, due to hydrogen’s small mass,
the BEC transition occurs at higher temperatures than in
those of alkali atoms.

In this paper we calculate the thermodynamical prop-
erties of the trapped hydrogen gas by using the quasi-
classical Hartree-Fock approximation [3]. This approach is
justified by the very large number of atoms (about 1010) in
the trap and by the relatively high temperatures involved
(order of µK). Due to the anharmonic external trap, the
analytical results for BEC thermodynamics obtained by
Stringari et al. [3] cannot be used for quantitative predic-
tions. Our detailed theoretical study of the hydrogen ther-
modynamics can give useful informations for future exper-
iments with a better optical resolution. In the last part of
the paper we discuss the criteria for macroscopic quan-
tum tunneling and macroscopic quantum self-trapping by
using a laser beam to create a double-well potential.

In the experiment reported in reference [2], the
axially symmetric magnetic trap is modelled by the
Ioffe-Pritchard potential

U(ρ, z) =
√

(αρ)2 + (βz2 + γ)2 − γ, (1)
a e-mail: salasnich@mi.infm.it

where ρ and z are cylindrical coordinates and the param-
eters α, β and γ can be calculated from the magnetic coil
geometry. In particular, for small displacements, the ra-
dial oscillation frequency is ωρ = α/

√
mγ = 2π×3.90 kHz,

the axial frequency is ωz =
√

2β/m = 2π × 10.2 Hz and
γ/kB = 35 µK [2].

A dilute gas of N identical hydrogen atoms is theoreti-
cally described by a bosonic field operator ψ̂(r, t). Follow-
ing a standard treatment, one can separate out the con-
densate part with the Bogoliubov prescription ψ̂(r, t) =
Φ(r) + φ̂(r, t), where Φ(r) = 〈ψ̂(r, t)〉 is the macroscopic
wavefunction (order parameter) of the condensate, nor-
malized to the number N0 of condensed atoms, and 〈...〉 is
the mean value in the grand-canonical ensemble. Then, in
the mean-field approximation, the order parameter Φ(r)
satisfies the following finite-temperature Gross-Pitaevskii
equation [4,5][
− ~

2

2m
∇2 + U(r) + gn0(r) + 2gnT(r)

]
Φ(r) = µΦ(r), (2)

where m is the mass of the atomic hydrogen, µ the chem-
ical potential, and g = 4π~2a/m is the scattering ampli-
tude with a the s-wave scattering length (a = 0.0648 nm).
The condensate density is n0(r) = |Φ(r)|2 and nT(r) =
〈φ̂+(r, t)φ̂(r, t)〉 is the thermal density of non-condensed
particles, normalized to NT = N −N0. Notice that we ig-
nore the T = 0 quantum depletion. In fact, the corrections
to the mean-field results are fixed by the gas parameter
n(0)a3, where the total density n(r) is evaluated at the
center of the trap [6]. We shall show that this parameter
is very small also when there are billions of atoms in the
trap.
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The thermal density can be calculated through the
quasi-classical Hartree-Fock approximation

nT(r) =
1
λ3

g3/2

(
e−(U(r)+2gn(r)−µ)/kBT

)
, (3)

where gα(z) =
∑∞
k=1 z

k/kα and λ = (2π~2/mkBT )1/2 is
the thermal length. Thus, the thermal particles behave as
“non-interacting” bosons moving in the self-consistent ef-
fective potential U(r) + 2gn(r), where the term 2gn(r)
is the mean-field generated by interactions with other
atoms [3]. Note that the quasi-classical approximation is
accurate for the experimental hydrogen cloud, which has
N = 1010 atoms. Also the Hartree-Fock approximation is
valid in this context because kBT is much larger than the
chemical potential µ.

In many papers, the thermodynamics of Bose-
condensed dilute gases has been studied by solving the
equations (2, 3) with a self-consistent iterative proce-
dure (see [6] and references therein). We shall adopt this
method that, in our case, describes correctly both the
high- and low-temperature regimes due to the negligible
effect of collective excitations in the thermal density. It
is important to observe that mean-field predictions for
trapped alkali-metal atoms are in good agreement with re-
cent path-integral Monte Carlo calculations [7]. Moreover,
in the experiments with atomic hydrogen, the gas is dilute
(na3 � 1) but also strongly interacting because Na/aH �
1, where aH = (~/mωH)1/2 with ωH = (ω2

ρωz)
1/3. It fol-

lows that the kinetic term of the equation (2) can be
safely neglected, as we have verified by numerically solv-
ing equation (2) at zero temperature, and one gets the
Thomas-Fermi condensate density

n0(r, t) =
1
g

[µ− U(r)− 2gnT(r)] , (4)

in the region where µ > U(r) + 2gnT(r), and n0(r) = 0
outside. In practice, we study the BEC thermodynamics
by solving self-consistently the equations (3, 4).

First, let us consider a noninteracting gas (g = 0). In
such a case, the formula (3) of thermal density simplifies
and one can directly obtain the BEC transition tempera-
ture T 0

c as a function of the total number N of atoms by
numerically solving the equation

N =
∫

d3r
(2π~2/mkBT 0

c )3/2
g3/2

(
e−U(r)/kBT

0
c

)
. (5)

In Figure 1 we compare the BEC transition temper-
ature T 0

c of the Ioffe-Pritchard potential with the an-
alytic formula T 0,H

c = 0.94~ωHN
1/3/kB, that is exact

in the thermodynamic limit for the harmonic potential
U = (m/2)(ω2

ρρ
2 + ω2

zz
2). Figure 1 shows that, for a

large number of atoms, T 0,H
c exceeds T 0

c . In particular, for
N = 2× 1010 the relative difference is more than 41%. In
the Ioffe-Pritchard trap the BEC transition temperature is
strongly affected by the fact that along the cylindrical ra-
dius the quadratic behavior becomes almost linear at large
distances (for a discussion of potentials with exact power
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Fig. 1. BEC transition temperature Tc versus number
N of hydrogen atoms. Comparison between harmonic and
Ioffe-Pritchard trapping potential.
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Fig. 2. Condensate density profile n0 and thermal density
profile nT, for a cloud of N = 2.2× 1010 interacting hydrogen
atoms in the Ioffe-Pritchard potential. Densities are in units of
a3
z. Notice the very different abscissae scales.

laws see [8]). It means that the density of states is higher
than in the harmonic case and consequently T 0

c is sup-
pressed. The critical temperature in this Ioffe-Pritchard
trap can be well represented by the law T 0

c = bN1/η, where
b = 5.47× 10−2 µK and η = 3.51.

The role of the interatomic interaction on the tran-
sition temperature Tc is very small. In Figure 1 one
observes that the repulsive interaction reduces Tc both
in harmonic and Ioffe-Pritchard traps. The shift of the
transition temperature δTc is in agreement with the law
δTc/Tc = −1.3(a/aH)N1/6, predicted by Stringari et al. [3]
for the harmonic trap. These corrections are of the order
of 0.1 µK.

In Figure 2 we show the condensate density n0(r)
and the thermal density nT(r) at T = 45 and 47 µK
for N = 2.2 × 1010 atoms. The thermal density shows
a depletion near the origin, that is due to the presence
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Fig. 3. Observables of the Bose condensate as a function of
temperature T . N = 2.2× 1010 interacting hydrogen atoms in
the Ioffe-Pritchard trap.

of the condensate fraction in that region. Note that the
thermal cloud fills a very large spatial region compared to
the condensate one.

In Figure 3 we present various properties of the con-
densate as a function of temperature for N = 2.2 ×
1010 atoms.

We consider the number of atoms and temperatures
achieved in the MIT experiment [2]. The central den-
sity and the size of the condensate are particularly in-
teresting because can be easily detected experimentally.
Our results are compatible with the experimental data:
at T = 45 ± 5 µK with N = 2.2 × 1010 the esti-
mated condensate fraction is 5%, the peak condensate
density 4.8 ± 1.1 × 1015 cm−3, the condensate diameter
is d = 15 µm and its length l = 5 mm [2]. We note
that, as previously anticipated, the gas parameter n(0)a3

is always less than 10−6.
The condensed fraction, the energy per particle of

the condensate and the chemical potential are shown
in Table 1. We calculate also the two-body decay rate
Γ = c

∫
d3rn2

0(r), where c = 1.1 × 10−15 cm3/s [3]. The
decay time can be estimated as τ1/2 = 7/(2cn0(0)) [3].
The experimentally measured life-time (about 5 seconds
with N0/N = 0.05) is larger than τ1/2. As stressed
in [2], the thermal gas continually replenishes the conden-
sate as atoms are lost through two-body collisions. Thus
the apparent life-time of the condensate is increased by
this replenishment.

For the sake of completeness, in Figure 4 we plot the
condensate fractionN0/N as a function of temperature for
N = 108, 109 and 1010 atoms. Note that Hijmans, Kagan,
Shlyapnikov and Walraven [9] have shown that, due to
the balance between the thermalization rate and the two-
body spin-relaxation decay rate, the maximum achievable
equilibrium condensate fraction for hydrogen cannot be
very large. Moreover, a recent theoretical paper [10] sug-
gests the possibility of interesting nonequilibrium effects
like the short-time formation of quasicondensate droplets.
However, we believe that the equilibrium results we have

Table 1. Condensate properties, for N = 2.2×1010 interacting
hydrogen atoms in the Ioffe-Pritchard trap, at various temper-
atures: condensed fraction N0/N , energy per particle of the
condensate E/N0 and chemical potential µ in units of 103

~ωz
(where 103

~ωz/kB = 0.49 µK), two-body decay rate Γ in units
of 1010 s−1 and decay time τ1/2 in seconds.

T (µK) N0/N E/N0 µ Γ τ1/2

44.0 0.21 4.64 6.59 2.53 0.37

44.5 0.18 4.39 6.25 2.08 0.38

45.0 0.16 4.13 5.89 1.65 0.41

45.5 0.13 3.82 5.46 1.27 0.44

46.0 0.10 3.45 4.95 0.88 0.49

46.5 0.07 3.04 4.37 0.56 0.56

47.0 0.04 2.52 3.64 0.29 0.69

47.5 0.02 1.89 2.75 0.10 0.93
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Fig. 4. Condensate fraction N0/N as a function of temper-
ature T . N interacting hydrogen atoms in the Ioffe-Pritchard
trap.

shown may provide a useful guide for future experiments
with a better optical resolution.

A very interesting issue is the possibility to detect
macroscopic quantum tunneling (MQT) and Josephson-
like oscillations of the Bose condensate in double-well
traps [11,12]. Recently, we have shown that with 23Na
atoms in harmonic trap one sees only the macroscopic
quantum self-trapping (MQST) of the condensate. To get
outside the MQST regime it is necessary to strongly re-
duce the scattering length [12]. Due to its very low scatter-
ing length, atomic hydrogen is a good candidate for MQT
in double-well traps.

It is easy to create a double-well trap for a cigar shaped
condensate by using a laser beam [13]. The effect of a laser
beam on atoms can be modelled by the following potential

UL(z) = U0 exp
(−z2

2σ2

)
, (6)



370 The European Physical Journal D

Table 2. Parameters of the MQT for N = 104 and N = 5×104

condensed hydrogen atoms. Ioffe-Pritchard external potential
and different values of the double-well potential barrier U0.
The laser-beam radius is σ = 5 µm. The energies are in units
of ~ωz and the oscillation period τ in seconds.

N U0 Eint ∆E0 Λ zc zcN τ

10000 8 1.371 0.222 24.69 0.39 3900 0.09

10000 10 1.383 0.164 33.64 0.34 3400 0.10

10000 12 1.397 0.126 44.38 0.30 3000 0.12

50000 16 4.345 0.095 183.03 0.15 7500 0.08

50000 18 4.361 0.072 242.95 0.13 6500 0.09

50000 20 4.378 0.055 317.80 0.11 5500 0.10

where the potential barrier U0 is proportional to the total
power of the laser beam perpendicular to the long axis of
the condensate, and σ is the beam radius [13].

Smerzi et al. [11] have shown that the time-dependent
behavior of the condensate in a double-well potential de-
pends on the parameter Λ = 4Eint/|∆E0|: Eint is the in-
teraction energy of the condensate and ∆E0 is the ki-
netic+potential energy splitting between the ground state
and the quasi-degenerate odd first excited state of the
GP equation [12,13]. Let z = (N1 − N2)/N be the frac-
tional population imbalance of the condensate in the two
wells. For a fixed Λ (Λ > 2) there exists a critical zc =
2
√
Λ− 1/Λ such that for 0 < z < zc there are Josephson-

like oscillations of the condensate. For z � zc these oscil-
lations are harmonic with period τ = τ0/

√
1 + Λ, where

τ0 = 2π~/|∆E0|. Instead for zc < z ≤ 1 there is MQST
of the condensate: even if the populations of the two wells
are initially set in an asymmetric state (z 6= 0) they main-
tain the original population imbalance without transfer-
ring particles through the barrier [11,12].

By solving the zero-temperature GP equation (2) with
the steepest-descent method in the double-well trap given
by equations (1, 6), we calculate the parameter Λ for the
condensate of hydrogen atoms in the tunneling region. In
Table 2 it is shown that, for a small number of condensed
atoms (about 104), the MQT is possible with a relatively
large fractional population imbalance z. For this number
of condensed atoms, the period τ of oscillation is smaller
than the life-time τ1/2 of the condensate, that is about
50 seconds. For a larger number of atoms, the parameter
Λ quickly grows and the condensate remains self-trapped.
Note that at nonzero temperature, BEC depletion and
thermal fluctuations will slightly modify the parameters
of the tunneling and will damp the coherent oscillations.
Nevertheless, as shown by Zapata, Sols and Leggett [14],
the effect of damping is negligible for temperatures lower
than about 10~ωH.

In this paper we have studied the thermodynamics of
the atomic hydrogen in a Ioffe-Pritchard trap. We have
found that the BEC transition temperature is strongly
dependent on the anharmonicity of the trap while the ef-
fect of repulsive interaction is small. We have calculated
the properties of the Bose condensate at various tempera-
tures. Our results are consistent with available experimen-
tal data, which still have a large error. The present paper
should be very useful for future experiments because it
gives detailed information on the Bose condensate at tem-
peratures not achieved so far. Finally, we have considered
the inclusion of a laser beam to produce Josephson-like
currents in the resulting double-well trap. Our calculations
suggest that with a small number of condensed atoms
(about 104) the macroscopic quantum tunneling can be
observed.

This work has been supported by the INFM Research Ad-
vanced Project on Bose-Einstein Condensation.
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